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Abstract. A simple proof is given for Nehari’s theorem that an analytic function

f which maps the unit disk onto a convex region has Schwarzian norm ‖Sf‖ ≤ 2.

The inequality in sharper form leads to the conclusion that no convex mapping with
‖Sf‖ = 2 can map onto a quasidisk. In particular, every bounded convex mapping

has Schwarzian norm ‖Sf‖ < 2. The analysis involves a structural formula for the

pre-Schwarzian of a convex mapping, which is studied in further detail.

§1. Introduction.

Let f be a function analytic and locally univalent in the unit disk D, and let

Sf = (f ′′/f ′)′ − 1

2
(f ′′/f ′)2

denote its Schwarzian derivative. Nehari [12] proved that if

|Sf(z)| ≤ 2

(1 − |z|2)2 , z ∈ D , (1)

then f is univalent in D. In the converse direction a result of Kraus [11], rediscovered
by Nehari [12], says that univalence of f implies |Sf(z)| ≤ 6(1 − |z|2)−2. Both
of the constants 2 and 6 are best possible. However, Nehari [13] later showed
that the inequality (1) holds whenever f maps the disk conformally onto a convex
region. For a proof he approximated a general convex mapping by a mapping onto
a convex polygon, then invoked the Schwarz–Christoffel formula and used some
delicate algebraic manipulations to arrive at the desired conclusion. In view of the
technical difficulty of Nehari’s proof, it may be worthwhile to observe that a direct
analytic argument, based only on the Schwarz lemma, leads to the same result.

Recall first that if f maps the disk conformally onto a convex region, then the
function

g(z) = 1 +
zf ′′(z)

f ′(z)
(2)
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has positive real part in D. (See for instance [6].) Since g(0) = 1, this says that g is
subordinate to the half-plane mapping ℓ(z) = (1+z)/(1−z), so that g(z) = ℓ(ω(z))
for some Schwarz function ω. In other words,

zf ′′(z)

f ′(z)
=

1 + ω(z)

1 − ω(z)
− 1 =

2ω(z)

1 − ω(z)
,

where ω is analytic and has the property |ω(z)| ≤ |z| in D. With the notation
ϕ(z) = ω(z)/z, this gives the representation

f ′′(z)

f ′(z)
=

2ϕ(z)

1 − zϕ(z)
(3)

for the pre-Schwarzian, where ϕ is analytic and satisfies |ϕ(z)| ≤ 1 in D. Straight-
forward calculation now gives the Schwarzian of f in the form

Sf(z) =

(

f ′′(z)

f ′(z)

)′

− 1

2

(

f ′′(z)

f ′(z)

)2

=
2ϕ′(z)

(1 − zϕ(z))2
. (4)

But |ϕ′(z)| ≤ (1 − |ϕ(z)|2)/(1 − |z|2) by the invariant form of the Schwarz lemma,
so we conclude that

|Sf(z)| ≤ 2
1 − |ϕ(z)|2

(1 − |z|2)(1 − |zϕ(z)|)2 ≤ 2

(1 − |z|2)2 , (5)

which is the inequality (1).
In other language, the inequality (5) says that the Schwarzian norm

‖Sf‖ = sup
z∈D

(1 − |z|2)2|Sf(z)|

of a convex mapping is no larger than 2. The bound is best possible since the
parallel strip mapping

L(z) =
1

2
log

1 + z

1 − z
(6)

has Schwarzian SL(z) = 2(1 − z2)−2.
Nehari [13] also stated that ‖Sf‖ < 2 if the convex mapping f is bounded.

We will show that the statement is correct, although Nehari’s proof appears to be
erroneous (more about this later). Ahlfors and Weill [1] showed that any analytic
function with ‖Sf‖ < 2 is not only univalent, but maps the disk onto a Jordan
domain and actually has a quasiconformal extension to the whole plane. As a
consequence, every bounded convex domain is a quasidisk.

However, the last statement follows easily from a standard geometric characteri-
zation of quasidisks. On the other hand, using a known property of John domains,
we will show in Section 3 of this paper that the image f(D) of a convex function
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with Schwarzian norm ‖Sf‖ = 2 can not be a quasidisk on the Riemann sphere.
This will allow us to conclude indirectly that every bounded convex mapping has
Schwarzian norm less than 2. The results are illustrated by some examples in
Section 4.

The structural formula (3) plays an important role in our analysis, and this
is studied in some detail. In Section 2 we develop a sharper form of Nehari’s
inequality ‖Sf‖ ≤ 2 for convex mappings f , and we find that certain geometric
properties of f correspond to analytic properties of the function ϕ that generates
its pre-Schwarzian.

After an earlier version of this paper was completed we became aware of a paper
by Koepf [10], which contains our theorem that f(D) is not a quasidisk when f is
convex and ‖Sf‖ = 2. However, Koepf’s proof appeals to Nehari’s theorem that
‖Sf‖ < 2 for every bounded convex mapping, and the error in Nehari’s proof was
not observed and corrected until now.

§2. A closer look at convex mappings.

We now take a closer look at the expression (3) for the pre-Schwarzian of a
convex mapping. Observe first that the formula gives also a sufficient condition for
convexity. In other words, if f is analytic and locally univalent in D and if f ′′/f ′

has the form (3) for some analytic function ϕ with |ϕ(z)| ≤ 1, then f is univalent
and it maps the disk conformally onto a convex region. Indeed, the assumption
(3) implies that the function (2) has positive real part, and a familiar argument
(cf. [6], p. 43) completes the proof. Note that f maps the disk onto a half-plane
precisely when ϕ(z) ≡ eiθ, a unimodular constant.

The representation (3) says that the function

ϕ(z) =
f ′′(z)/f ′(z)

2 + zf ′′(z)/f ′(z)

satisfies |ϕ(z)|2 ≤ 1, which gives by simple calculation the stronger inequality

Re

{

1 +
zf ′′(z)

f ′(z)

}

≥ 1

4
(1 − |z|2)

∣

∣

∣

∣

f ′′(z)

f ′(z)

∣

∣

∣

∣

2

(7)

for every convex mapping f . Strict inequality holds for all z ∈ D unless ϕ(z) ≡ eiθ,
which means that f is a half-plane mapping.

We now return to Schwarzian derivatives of convex mappings and the formula
(4), with |ϕ(z)| ≤ 1 in D. Recall that (1 − |z|2)|ϕ′(z)| ≤ 1 − |ϕ(z)|2, with strict
inequality for all z ∈ D unless ϕ(z) ≡ eiθ or ϕ is a Möbius automorphism of the
disk. Applying this inequality, we find after short calculation that

(1 − |z|2)2|Sf(z)| + 2

∣

∣

∣

∣

ϕ(z) − z

1 − zϕ(z)

∣

∣

∣

∣

2

≤ 2 . (8)
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Strict inequality holds in (8) for all z ∈ D unless ϕ(z) ≡ eiθ or ϕ is a Möbius
self-mapping of D. In the first case, f is a half-plane mapping and Sf(z) ≡ 0. In
either case, equality holds for all z ∈ D. In view of the relation (3), the inequality
(8) reduces to

(1 − |z|2)2|Sf(z)| + 2

∣

∣

∣

∣

z − 1

2
(1 − |z|2)f ′′(z)

f ′(z)

∣

∣

∣

∣

2

≤ 2 . (9)

In this form the inequality appears in a paper of Kim and Minda [9], with a more
geometric proof based on estimates of the hyperbolic metric. For mappings onto
convex polygons, Nehari’s proof also led him to an equivalent form of the inequality
(9) (cf. [13], formula (7)).

For z = 0, the inequality (9) says that convex univalent functions f(z) = z +
a2z

2 + . . . satisfy the coefficient inequality

∣

∣a3 − a2
2

∣

∣ ≤ 1

3

(

1 − |a2|2
)

,

a result due to Hummel [8] and given a shorter proof by Trimble [15]. Conversely,
a Koebe transform

F (z) =
f

(

z+ζ

1+ζz

)

− f(ζ)

(1 − |ζ|2)f ′(ζ)
= z + A2(ζ)z2 + A3(ζ)z3 + . . .

shows that the coefficient inequality implies the inequality (9).
Clearly, the inequality (9) gives a stronger form of the result that ‖Sf‖ ≤ 2 for

all convex mappings. It also implies that

∣

∣

∣

∣

z − 1

2
(1 − |z|2)f ′′(z)

f ′(z)

∣

∣

∣

∣

2

≤ 1 ,

which reduces to the inequality (7) and is a sufficient condition for convexity. Thus
the inequality (9) provides a necessary and sufficient condition for convexity.

On the other hand, the inequality ‖Sf‖ ≤ 2 is far from sufficient for convexity.
In fact, for no ε > 0 does the condition ‖Sf‖ ≤ ε imply that f is a convex mapping.
This can be seen by an example constructed in the paper [3]. There it is found that
for 0 < t < 1 the function

f(z) =
(1 + z)a − (1 − z)a

(1 + z)a + (1 − z)a
, where a =

√
1 + t ,

has Schwarzian ‖Sf‖ = −2t(1− z2)−2 and maps the disk onto a nonconvex region
bounded by two circular arcs.
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Nehari’s proof that ‖Sf‖ ≤ 2 for all convex mappings has a significant implica-
tion for the Schwarz–Christoffel construction. If f is a mapping of the unit disk
onto the interior of an n-gon, the Schwarz–Christoffel formula states that

f ′(z) =
C

(z − z1)2β1 · · · (z − zn)2βn

, (10)

where C is a complex constant, zk ∈ ∂D are the preimages of the vertices, and
2βkπ are the exterior angles at the vertices of the polygon, with −1 < βk < 1 and
β1 + · · · + βn = 1. The polygon is convex if and only if all βk > 0. The convex
polygon is bounded if and only if 0 < βk < 1

2
for all k. According to Nehari’s

calculations in [13], if a function f has a derivative of the form (10) with arbitrary
parameters zk ∈ ∂D and 0 < βk < 1, then ‖Sf‖ ≤ 2. It then follows from the
earlier theorem of Nehari [12] that f provides a univalent mapping onto the interior
of a convex n-gon. A more direct proof can be given as follows. The formula (10)
leads to the expression

zf ′′(z)

f ′(z)
= −2

n
∑

k=1

βkz

z − zk
,

which implies that

Re

{

1 +
zf ′′(z)

f ′(z)

}

= 1 − 2
n

∑

k=1

βk Re

{

z

z − zk

}

> 1 − 2
n

∑

k=1

1

2
βk = 0 , z ∈ D ,

because all βk are positive and their sum is 1. Because f is locally univalent, we
conclude that f is univalent and convex in D.

We have shown that convex mappings of the disk have the representation (3) for
some analytic function ϕ with |ϕ(z)| ≤ 1. It is interesting to ask how the geometric
properties of the mapping are encoded in behavior of ϕ. When ϕ is a unimodular
constant, one obtains a half-plane mapping, whereas an automorphism of the disk
generates a mapping onto a parallel strip or an infinite sector. Our next result
describes the situation when ϕ is a finite Blaschke product of higher degree.

Theorem 1. Let f be a convex mapping satisfying (3) for some analytic function
ϕ with |ϕ(z)| ≤ 1. Then ϕ is a finite Blaschke product of degree n ≥ 2 if and only
if f maps D onto the interior of a (bounded or unbounded) convex (n + 1)-gon.

Proof. Suppose first that ϕ is a finite Blaschke product of degree n,

ϕ(z) = eiθ
n

∏

k=1

z − αk

1 − αkz
, |αk| < 1 . (11)

After rotating f we may assume that eiθ = 1. The right-hand side of (3) is a
rational function with poles at the roots of zϕ(z) = 1; that is, at n + 1 distinct
points z1, . . . , zn+1 on the unit circle. A partial fraction expansion gives

ϕ(z)

1 − zϕ(z)
= −

n+1
∑

k=1

βk

z − zk
(12)
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for some complex constants βk 6= 0. We claim that β1 + · · · + βn+1 = 1. To see
this, combine (11) and (12) to write

n+1
∑

k=1

βk

z − zk
=

∏n
k=1

(z − αk)

z
∏n

k=1
(z − αk) −

∏n
k=1

(1 − αkz)
. (13)

On the right-hand side of (13) is a quotient of two monic polynomials, the numerator
of degree n and the denominator of degree n + 1. But the left-hand side has the
form

n+1
∑

k=1

βk

z − zk
=

(β1 + · · ·+ βn+1)z
n + . . .

∏n+1

k=1
(z − zk)

,

and so β1 + · · ·+ βn+1 = 1.
Next we show that all βk are real. Write βk = bk + ick, so that

zϕ(z)

zϕ(z) − 1
=

n+1
∑

k=1

βkz

z − zk
=

n+1
∑

k=1

bkz

z − zk
+ i

n+1
∑

k=1

ckz

z − zk
.

For |z| = 1 and z 6= z1, . . . , zn+1, we infer that

1

2
= Re

{

zϕ(z)

zϕ(z) − 1

}

=
n+1
∑

k=1

bk Re

{

z

z − zk

}

−
n+1
∑

k=1

ck Im

{

z

z − zk

}

=
1

2
−

n+1
∑

k=1

ck Im

{

z

z − zk

}

,

since b1 + · · · + bn+1 = 1. But
∣

∣

∣
Im

{

z
z−zk

}
∣

∣

∣
→ ∞ as z tends to zk along the unit

circle, so we deduce that c1 = c2 = · · · = cn+1 = 0. Hence all of the constants βk

are real. In view of (3), we conclude that the convex mapping f has a derivative
of the form (10), with n replaced by n + 1. It follows geometrically that f maps
the disk locally onto a polygonal region with exterior angles 2βkπ at the vertices.
Since f is convex, all of the angles are positive, and so f maps the disk onto the
interior of a convex (n + 1)-gon.

Conversely, suppose that f maps the disk onto the interior of a convex (n + 1)-
gon. Then by (3) and the Schwarz–Christoffel formula, we have

zϕ(z)

1 − zϕ(z)
= −

n+1
∑

k=1

βkz

z − zk
= r(z) , (14)

say, where zk are distinct points on the unit circle and βk are positive numbers
whose sum is 1. In particular, ϕ is a rational function, analytic in the unit disk,
given by

zϕ(z) =
r(z)

1 + r(z)
. (15)
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But Re{r(z)} = −1

2
for all z ∈ ∂D with z 6= z1, . . . , zn+1, which implies that

|ϕ(z)| = 1. The exceptional points zk are poles of r(z), and so |ϕ(zk)| = 1 as well,
by (15). Thus |ϕ(z)| ≡ 1 on ∂D and ϕ is a finite Blaschke product. Finally, because
the relation (14) shows that zϕ(z) = 1 at precisely n + 1 points z1, . . . , zn+1 on
the unit circle, it follows that zϕ(z) winds about the origin n + 1 times, and so the
Blaschke product ϕ has degree n. �

The next theorem describes the functions ϕ that generate bounded convex map-
pings.

Theorem 2. Let f be a convex mapping of the unit disk, and let ϕ be the analytic
function associated with f by the formula (3). Then the image f(D) is bounded if
and only if

lim sup
|z|→1

1 − |z|
|1 − zϕ(z)| <

1

2
. (16)

Proof. If the relation (16) holds, then it follows from the representation (3) that

|f ′(z)| ≤ C

(1 − |z|)a
, R < |z| < 1 ,

for some constants C > 0, a < 1, and R > 0. Hence f(z) is bounded in D.
Conversely, suppose that f is a convex mapping with bounded image Ω = f(D).

Then as proved in Section 3 of this paper, f has Schwarzian norm ‖Sf‖ ≤ 2t for
some t < 1. Consider the function

g(z) =
f(z)

1 + a2 f(z)
, where a2 = 1

2
f ′′(0) .

Then ‖Sg‖ = ‖Sf‖ ≤ 2t, and since g′′(0) = 0 it follows from [4] that
∣

∣

∣

∣

g′′(z)

g′(z)

∣

∣

∣

∣

≤ 2t|z|
1 − |z|2 , z ∈ D .

Therefore,

lim sup
|z|→1

(1 − |z|2)
∣

∣

∣

∣

g′′(z)

g′(z)

∣

∣

∣

∣

< 2 .

On the other hand, since ‖Sf‖ < 2, we also know from [4] that −1/a2 /∈ Ω, and
consequently |1 + a2 f(z)| ≥ δ > 0 for all z ∈ D. But

g′′(z)

g′(z)
=

f ′′(z)

f ′(z)
− 2a2 f ′(z)

1 + a2 f(z)
,

and the boundedness of Ω implies that (1 − |z|2)|f ′(z)| → 0 as |z| → 1, so we infer
that

lim sup
|z|→1

(1 − |z|2)
∣

∣

∣

∣

f ′′(z)

f ′(z)

∣

∣

∣

∣

< 2 .
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In view of (3), we conclude that

lim sup
|z|→1

(1 − |z|)|ϕ(z)|
|1 − zϕ(z)| <

1

2
.

Since |ϕ(z) ≤ 1, the relation (16) follows. Indeed, if L denotes the “lim sup” in
(16) and {zn} is an extremal sequence, then L = 0 unless lim sup |ϕ(zn)| = 1. �

§3. Convex mappings with ‖Sf‖ = 2.

We have seen that ‖Sf‖ ≤ 2 for every convex mapping of the disk. We now show
that ‖Sf‖ < 2 when the convex mapping is bounded. We will prove this indirectly
as a consequence of the stronger statement that the image of a convex mapping
with ‖Sf‖ = 2 cannot be a quasidisk on the Riemann sphere. Because a bounded
convex domain is a quasidisk, it will then follow that bounded convex mappings
cannot have Schwarzian norm ‖Sf‖ = 2, and so ‖Sf‖ < 2.

For a study of convex mappings f with ‖Sf‖ = 2, our analysis will be based on
the formula (3) that expresses the pre-Schwarzian of a convex mapping in terms
of an analytic function ϕ with |ϕ(z)| ≤ 1. We may confine attention to the case
where |ϕ(z)| < 1 in D, since the functions ϕ(z) ≡ eiθ correspond to half-plane
mappings f , for which Sf(z) ≡ 0. It will be useful to know how ϕ changes when f
is precomposed with a Möbius automorphism of the disk. We state the result as a
lemma.

Lemma 1. Let f be a convex mapping with

f ′′(z)

f ′(z)
=

2ϕ(z)

1 − zϕ(z)

for some function analytic ϕ with |ϕ(z)| < 1 in D. For fixed z0 ∈ D, define the
Möbius automorphism σ(z) = (z + z0)/(1 + z0z) and let g = f ◦ σ. Then g is a
convex mapping of D and

g′′(z)

g′(z)
=

2λ(z)

1 − zλ(z)
, where λ(z) =

ϕ(σ(z)) − z0

1 − z0ϕ(σ(z))
.

Proof. Calculations give

g′′(z)

g′(z)
=

f ′′(σ(z))

f ′(σ(z))
σ′(z) +

σ′′(z)

σ′(z)

=
2

1 + z0z

[

(1 − |z0|2)ϕ(σ(z))

(1 + z0z) − (z + z0)ϕ(σ(z))
− z0

]

= 2
ϕ(σ(z)) − z0

(1 − z0ϕ(σ(z))) − z(ϕ(σ(z)) − z0)
=

2λ(z)

1 − zλ(z)
. �
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Theorem 3. Let f be a convex mapping with Schwarzian norm ‖Sf‖ = 2, and
suppose that (1− |z0|2)2|Sf(z0)| = 2 for some point z0 ∈ D. Then f maps the disk
onto a parallel strip.

Proof. According to (3), the pre-Schwarzian of f has the form

f ′′(z)

f ′(z)
=

2ϕ(z)

1 − zϕ(z)

for some analytic function ϕ with |ϕ(z)| ≤ 1 in D. In fact, |ϕ(z)| < 1 for all z ∈ D,
since ϕ(z) ≡ eiθ would imply that f is a half-plane mapping with ‖Sf‖ = 0. The
hypothesis implies that equality occurs in the inequality (8), so that ϕ is a Möbius
self-mapping of D. Since (1 − |z0|2)2|Sf(z0)| = 2, it also follows from (8) that
ϕ(z0) = z0. Now let σ(z) = (z + z0)/(1 + z0z) and define g = f ◦ σ. Then by
Lemma 1,

g′′(z)

g′(z)
=

2λ(z)

1 − zλ(z)
, where λ(z) =

ϕ(σ(z)) − z0

1 − z0ϕ(σ(z))
.

In particular, λ is a Möbius self-mapping of D with λ(0) = 0, since σ(0) = z0 and
ϕ(z0) = z0. Hence λ is a rotation, and so λ(z) = eiθz for some unimodular constant
eiθ. This shows that

g′′(z)

g′(z)
=

2eiθz

1 − eiθz2
=

Lθ
′′(z)

Lθ
′(z)

,

where Lθ(z) = e−iθ/2L(eiθ/2z) is a rotation of the parallel strip mapping L defined
by (6). Integration now yields g(z) = αLθ(z) + β for some constants α 6= 0 and β,
so that

f(z) = g(σ−1(z)) = αLθ(σ
−1(z)) + β ,

and f maps the disk onto a parallel strip. �

In order to treat the case where (1 − |z|2)2|Sf(z)| < 2 in D, we will appeal to
a known result about John domains. A bounded simply connected domain Ω ⊂ C

is a John domain if there is a constant A > 0 such that for every crosscut C of
Ω the inequality diamH ≤ A diamC holds for one component H of Ω \ C. (See
for instance Pommerenke [14].) Every bounded quasidisk is a John domain. It was
found in [5] that if ‖Sf‖ ≤ 2 and f(D) is a John domain, then f(D) is a quasidisk.
The following lemma is implicit in the proof of Theorem 6 in [5].

Lemma 2. Let f be analytic and univalent in D with Schwarzian norm ‖Sf‖ ≤ 2,
and suppose that its image f(D) is a John domain. Then no sequence of normalized
Koebe transforms of f can converge locally uniformly to a parallel strip mapping.

Here a normalized Koebe transform is understood to mean a Koebe transform
followed by an appropriate Möbius transformation to produce a function F with
F (0) = 0, F ′(0) = 1, and F ′′(0) = 0.

Now for the remaining case where the supremum that defines the Schwarzian
norm is not attained in D.
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Theorem 4. Let f be a convex mapping with ‖Sf‖ = 2 but (1− |z|2)2|Sf(z)| < 2
for all points z ∈ D. Then the image f(D) is not a quasidisk on the Riemann
sphere.

Taken together, Theorems 3 and 4 have the following consequence.

Corollary. If f is a convex mapping with ‖Sf‖ = 2, then f(D) is not a quasidisk
on the Riemann sphere. In particular, every bounded convex mapping of D has
Schwarzian norm ‖Sf‖ < 2.

Proof of theorem. Because of the hypothesis, there exists a sequence of points zn

in D with |zn| → 1 such that

(1 − |zn|2)2|Sf(zn)| → 2 as n → ∞ .

By the inequality (8), this implies that

ϕ(zn) − zn

1 − znϕ(zn)
→ 0 as n → ∞ . (17)

In other words, the hyperbolic distance d(ϕ(zn), zn) tends to 0. It follows from (17)
that

1 − |zn|2
1 − znϕ(zn)

→ 1 as n → ∞ , (18)

since
1 − |zn|2

1 − znϕ(zn)
− 1 = zn

ϕ(zn) − zn

1 − znϕ(zn)
.

But the representation (4) of Sf shows that

2 |ϕ′
(zn)|

∣

∣

∣

∣

1 − |zn|2
1 − znϕ(zn)

∣

∣

∣

∣

2

= (1 − |zn|2)2|Sf(zn)| → 2 ,

and so the relation (18) implies that

|ϕ′
(zn)| → 1 as n → ∞ . (19)

There is no loss of generality in assuming that f(0) = 0 and f ′(0) = 1, since the
Schwarzian is invariant under postcomposition with affine transformations, which
preserve convexity. Now make a further normalization by defining

f0(z) =
f(z)

1 + a2f(z)
, where a2 =

1

2
f ′′(0) .

By a result of Chuaqui and Osgood [3], a normalized function f with ‖Sf‖ ≤ 2 can
not take the value −1/a2, so f0 is analytic and univalent, with f0(0) = 0, f ′

0(0) = 1,
10



and f ′′
0 (0) = 0. Also, Sf0 = Sf , since the Schwarzian is preserved under Möbius

transformation. Therefore, ‖Sf0‖ = 2 and (1 − |z|2)2|Sf0(z)| < 2 for all z ∈ D.
But by a theorem of Gehring and Pommerenke ([7], Theorem 2), the properties
f0(0) = 0, f ′

0(0) = 1, f ′′
0 (0) = 0, and ‖Sf0‖ ≤ 2 imply that f0 is either a rotation

Lθ of the strip mapping L given by (6), or else f0 has a homeomorphic extension
to D. But the first alternative is impossible because (1 − |z|2)2|SLθ(z)| = 2 for all
points z on some diameter of the disk, whereas (1−|z|2)2|Sf0(z)| < 2 for all z ∈ D.
Thus we infer in particular that f0 is bounded.

Next we define the Koebe transform

gn(z) =
f0(σn(z)) − f0(zn)

(1 − |zn|2)f ′
0(zn)

, where σn(z) =
z + zn

1 + znz
.

Then gn is univalent with gn(0) = 0, g′
n(0) = 1, and ‖Sgn‖ = 2, by the Möbius

invariance of the Schwarzian norm. We normalize further by defining

hn(z) =
gn(z)

1 + bngn(z)
, where bn = 1

2
g′′

n(0) ,

so that hn has the additional property h′′
n(0) = 0, and again ‖Shn‖ = 2. Note that

Shn = Sgn = S(f0 ◦ σn) = S(f ◦ σn) .

Thus by Lemma 1 and the relation (4), we see that

Shn(z) = S(f ◦ σn)(z) =
2λ′

n(z)

(1 − zλn(z))2
, (20)

where

λn(z) =
ϕ(σn(z)) − zn

1 − znϕ(σn(z))
.

Then

λn(0) =
ϕ(zn) − zn

1 − znϕ(zn)
→ 0

by (17), and direct calculation gives

|λ′
n(0)| =

(1 − |zn|2)2
|1 − znϕ(zn)|2 |ϕ′(zn)| ,

so that |λ′
n(0)| → 1, in view of (18) and (19). Hence by a normal family argument

we may assume after passing to a subsequence that λn(z) converges to eiθz locally
uniformly in D, for some angle θ. It then follows from (20) that

Shn(z) → 2eiθ

(1 − eiθz2)2
= SLθ(z) , (21)

11



locally uniformly in D, where again Lθ(z) = e−iθ/2L(eiθ/2z), a rotation of the
parallel strip mapping L.

In view of the normalizations, we can conclude from (21) that hn(z) → Lθ(z)
locally uniformly in D. Indeed, the function un = (h′

n)−1/2 satisfies the differential
equation u′′ + 1

2
(Shn)u = 0 and the initial conditions un(0) = 1 and u′

n(0) = 0,

since h′
n(0) = 1 and h′′

n(0) = 0. Similarly, the function vθ = (L′
θ)

−1/2 satisfies
the differential equation u′′ + 1

2
(SLθ)u = 0 and the initial conditions vθ(0) = 1

and v′
θ(0) = 0, since L′

θ(0) = 1 and L′′
θ (0) = 0. Thus we conclude from (21)

that un(z) → vθ(z), so that h′
n(z) → L′

θ(z) locally uniformly in D. But hn(0) =
Lθ(0) = 0, so this implies that hn(z) converges locally uniformly to Lθ(z). In
particular, the function f0 has Schwarzian norm ‖Sf0‖ ≤ 2 and a sequence of its
Koebe transforms converges locally uniformly to a parallel strip mapping. Thus by
Lemma 2 the image f0(D) cannot be a John domain, so it is not a quasidisk. Hence
f(D) is not a quasidisk on the Riemann sphere. �

Finally, we comment on Nehari’s argument in [13] that a mapping onto a bounded
convex domain must have ‖Sf‖ < 2. He approximates the given bounded convex
domain by a convex polygon, and by geometric considerations he shows that all
the inner angles are bounded below by a positive constant when the polygon is
sufficiently close to the domain. He then appeals to Carathéodory’s theorem on
convex polytopes to reduce the analysis to quadrilaterals with one of the angles
bounded below as before (a crucial point) and he works with the corresponding
Schwarz–Christoffel mappings. Via this argument, one is led to determining the
supremum of the Schwarzian norms of mappings onto quadrilaterals where one
exterior angle, 2πα1 in Nehari’s notation, is uniformly bounded above away from
π/2. As he states, the corresponding estimate would then apply to the norm of all
bounded convex mappings. He shows correctly that if the norm of the Schwarzian
of the mapping onto a bounded quadrilateral is equal to 2 then the quadrilateral
must degenerate to an unbounded polygon with only two vertices, for which he
deduces

‖Sf‖ ≤ 2(1 − (1 − 2α1)
2) < 2.

The proper conclusion is that the norm can never be equal to 2 for bounded quadri-
laterals with the restriction on α1. But the norm can be arbitrarily close to 2, for
example by taking mappings onto long, thin rectangles (for which α1 = 1/4). This
degeneracy of four vertices coalescing to just two vertices points exactly to the
problem of the supremum not being a maximum. We have not been able to rescue
Nehari’s approach, ingenious as it is.

§4. Examples.

As illustrations of the preceding results, it will be instructive to consider some
specific examples of convex mappings and their Schwarzian derivatives.
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Example 1. Sectors. Consider first the class of conformal mappings

w = f(z) =

(

1 + z

1 − z

)a

, 0 < a ≤ 2 ,

of the unit disk onto an infinite sector with angle aπ at the origin. Simple calcula-
tions give the Schwarzian derivative

Sf(z) =
2(1 − a2)

(1 − z2)2
.

Thus f has Schwarzian norm ‖Sf‖ = 2|1 − a2| ≤ 6, and ‖Sf‖ ≤ 2 for a ≤
√

2.
The sector is convex for a ≤ 1, and ‖Sf‖ decreases to 0 as the sector widens to a
half-plane. In particular, for a ≤ 1 these functions provide examples of unbounded
convex mappings with Schwarzian norm less than 2.

Example 2. Half-strip. The function

w = f(z) = sin−1

(

i
1 + z

1 − z

)

maps the unit disk onto the half-strip {w = u + iv : −π
2

< u < π
2
, v > 0}. Its

Schwarzian derivative is found to be

Sf(z) =
3z − 1

2
(1 + z2)

(1 − z)2(1 + z2)2
.

Hence (1 − x2)2Sf(x) → 2 as x → 1− along the real axis. But ‖Sf‖ ≤ 2 because
the half-strip is convex, so we conclude that ‖Sf‖ = 2. On the other hand, the
half-strip is not a quasidisk since its boundary has a cusp at infinity, so the result
is compatible with Theorems 3 and 4.

Example 3. Parabolic region. The function

w = f(z) =
4

π2

[

cosh−1

(

1 + z

1 − z

)]2

maps the unit disk conformally onto the region Ω inside the parabola v2 = 4(u+1),
where w = u + iv. (See Bieberbach [2], p. 111 for the construction.) Note that
the function [cosh−1(ζ)]2 is single-valued although cosh−1(ζ) is not. Laborious
calculations show that the Schwarzian derivative is

Sf(z) =
3 − 2z + 3z2

8z2(1 − z)2
− 3/2

z(1 − z)2
[

cosh−1
(

1+z
1−z

)]2
.
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The apparent singularity at z = 0 is removed by cancellation of the two terms,
since

[

cosh−1

(

1 + z

1 − z

)]2

= 4z + . . .

for z near zero. We know that ‖Sf‖ ≤ 2 because f is a convex mapping, and it is
not difficult to see that (1 − x2)2Sf(x) → 2 as x → 1− along the real axis. Hence
‖Sf‖ = 2 and we conclude from Theorems 3 and 4 that Ω is not a quasidisk. But
the last fact is again apparent geometrically, since the boundary of Ω has a cusp at
infinity.
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